Semi-implicit Scheme for the Dwd Lokal-modell

نویسندگان

  • Stephen Thomas
  • Claude Girard
چکیده

The fourth generation of numerical weather prediction (NWP) models is currently under development at the Deutscher Wetterdienst (DWD) consisting of a global grid point model (GME) and limited-area Lokal{Modell (LM). The nonhydrostatic fully compressible LM has been designed to meet high-resolution regional forecast requirements at meso-and meso-scales. The initial LM implementation is based on the NCAR/Penn State MM5 with the addition of a novel generalized terrain-following coordinate and rotated lat-lon grid. A fully 3D semi-implicit time-stepping scheme for the LM based on a minimal residual Krylov iterative solver and line relaxation preconditioners has been implemented. The new semi-implicit scheme is compared with a variant of the Klemp{Wilhelmson split-explicit scheme (horizontal explicit, vertical implicit) on the basis of computational eeciency and accuracy at resolutions ranging from 7km to 400m. Both idealized 3D mountain wave ows and real data cases are analyzed. Below the tropopause, the 3D semi-implicit scheme becomes more eecient at resolutions of 2:5km or higher when the number of small time steps t s increases with the sound speed Courant number.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Consistent Time-Split Numerical Scheme Applied to the Nonhydrostatic Compressible Equations*

The primary interest of the paper is to apply a two-time-level split explicit time scheme developed by one of the authors to the Lokal-Modell (LM) of the German Weather Service (DWD). This model belongs to the operational NWP system at DWD, which makes it particularly interesting for this study. To better understand the implementation of this time scheme in a compressible nonhydrostatic model t...

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

A General Solution for Implicit Time Stepping Scheme in Rate-dependant Plasticity

In this paper the derivation of the second differentiation of a general yield surface implicit time stepping method along with its consistent elastic-plastic modulus is studied. Moreover, the explicit, trapezoidal implicit and fully implicit time stepping schemes are compared in rate-dependant plasticity. It is shown that implementing fully implicit time stepping scheme in rate-dependant plasti...

متن کامل

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007